Early symptoms and sensations as predictors of lung cancer: a machine learning multivariate model

Sci Rep. 2019 Nov 11;9(1):16504. doi: 10.1038/s41598-019-52915-x.

Abstract

The aim of this study was to identify a combination of early predictive symptoms/sensations attributable to primary lung cancer (LC). An interactive e-questionnaire comprised of pre-diagnostic descriptors of first symptoms/sensations was administered to patients referred for suspected LC. Respondents were included in the present analysis only if they later received a primary LC diagnosis or had no cancer; and inclusion of each descriptor required ≥4 observations. Fully-completed data from 506/670 individuals later diagnosed with primary LC (n = 311) or no cancer (n = 195) were modelled with orthogonal projections to latent structures (OPLS). After analysing 145/285 descriptors, meeting inclusion criteria, through randomised seven-fold cross-validation (six-fold training set: n = 433; test set: n = 73), 63 provided best LC prediction. The most-significant LC-positive descriptors included a cough that varied over the day, back pain/aches/discomfort, early satiety, appetite loss, and having less strength. Upon combining the descriptors with the background variables current smoking, a cold/flu or pneumonia within the past two years, female sex, older age, a history of COPD (positive LC-association); antibiotics within the past two years, and a history of pneumonia (negative LC-association); the resulting 70-variable model had accurate cross-validated test set performance: area under the ROC curve = 0.767 (descriptors only: 0.736/background predictors only: 0.652), sensitivity = 84.8% (73.9/76.1%, respectively), specificity = 55.6% (66.7/51.9%, respectively). In conclusion, accurate prediction of LC was found through 63 early symptoms/sensations and seven background factors. Further research and precision in this model may lead to a tool for referral and LC diagnostic decision-making.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Female
  • Humans
  • Lung Neoplasms / diagnosis*
  • Machine Learning*
  • Male
  • Middle Aged
  • Models, Theoretical
  • Prognosis
  • ROC Curve
  • Reproducibility of Results
  • Sensation*
  • Symptom Assessment*