Effect of thermomechanical treatment on the mechanical and microstructural evolution of a β-type Ti-40.7Zr-24.8Nb alloy

Bioact Mater. 2019 Oct 25:4:303-311. doi: 10.1016/j.bioactmat.2019.10.007. eCollection 2019 Dec.

Abstract

In this study, the microstructural evolution and mechanical properties of a newly developed Ti-40.7Zr-24.8Nb (TZN) alloy after different thermomechanical processes were examined. As-cast TZN alloy plates were solution-treated at 890 °C for 1 h, after which the thickness of the alloy plates was reduced by cold rolling at reduction ratios of 20%, 56%, 76%, and 86%. Stress-induced α" formation, {332} <113> β mechanical twinning, and kink band formation were observed in the cold-rolled TZN alloy samples. In the TZN sample after cold rolling at the 86% reduction ratio plus a recrystallization annealing at 890 °C for 1 h, the deformation products of a stress-induced α" phase, {332}<113> β mechanical twinning, and kink bands disappeared, resulting in a fine, equiaxed single β phase. The alloy samples exhibited elongation at rupture ranging from 7% to 20%, Young's modulus ranging from 63 to 72 GPa and tensile strength ranging from 753 to 1158 MPa. The TZN alloy sample after cold rolling and recrystallization annealing showed a yield strength of 803 MPa, a tensile strength of 848 MPa, an elongation at rupture of 20%, and an elastic admissible strain of 1.22%, along with the most ductile fractures during tensile testing.

Keywords: Deformation mechanism; Mechanical properties; Orthopedic implants; TZN (Ti–Nb–Zr) alloy; Thermomechanical process.