Communication versus waterproofing: the physics of insect cuticular hydrocarbons

J Exp Biol. 2019 Dec 4;222(Pt 23):jeb210807. doi: 10.1242/jeb.210807.

Abstract

Understanding the evolution of complex traits is among the major challenges in biology. One such trait is the cuticular hydrocarbon (CHC) layer in insects. It protects against desiccation and provides communication signals, especially in social insects. CHC composition is highly diverse within and across species. To understand the adaptive value of this chemical diversity, we must understand how it affects biological functionality. So far, CHCs have received ample research attention, but their physical properties were little studied. We argue that these properties determine their biological functionality, and are vital to understanding how CHC composition affects their adaptive value. We investigated melting behaviour and viscosity of CHCs from 11 ant species using differential scanning calorimetry and a novel microrheological technique. CHCs began melting below -45°C, and often were entirely liquid only above 30°C. Thus, they formed a solid-liquid mixture under ambient conditions, which contrasts to previous assumptions of entirely solid layers in many species. This may be adaptive as only biphasic CHC layers ensure uniform coating of the insect body, which is necessary for waterproofing. CHC viscosity was mostly between 0.1 and 0.2 Pa s-1, thus similar to motor oils. Surprisingly, chemically different CHC profiles had similar viscosities, suggesting that a certain viscosity level is adaptive and ensures that communication signals can be perceived. With this study, we draw attention to the importance of studying the physics of CHC layers. Only by understanding how chemical and physical mechanisms enable CHC functionality can we understand the causes and consequences of CHC diversification.

Keywords: Ants; Ecophysiology; Lipid layer; Material properties; Melting point; Phase behaviour; Viscosity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Communication*
  • Animals
  • Ants / chemistry*
  • Ants / physiology
  • Calorimetry, Differential Scanning
  • Freezing
  • Hydrocarbons / chemistry*
  • Rheology
  • Species Specificity
  • Viscosity

Substances

  • Hydrocarbons