Modulation of Gut Microbiota through Dietary Phytochemicals as a Novel Anti-infective Strategy

Curr Drug Discov Technol. 2020;17(4):498-506. doi: 10.2174/1570163816666191107124214.

Abstract

Quorum Sensing (QS) is a phenomenon in which bacterial cells communicate with each other with the help of several low molecular weight compounds. QS is largely dependent on population density, and it triggers when the concentration of quorum sensing molecules accumulate in the environment and crosses a particular threshold. Once a certain population density is achieved and the concentration of molecules crosses a threshold, the bacterial cells show a collective behavior in response to various chemical stimuli referred to as "auto-inducers". The QS signaling is crucial for several phenotypic characteristics responsible for bacterial survival such as motility, virulence, and biofilm formation. Biofilm formation is also responsible for making bacterial cells resistant to antibiotics. The human gut is home to trillions of bacterial cells collectively called "gut microbiota" or "gut microbes". Gut microbes are a consortium of more than 15,000 bacterial species and play a very crucial role in several body functions such as metabolism, development and maturation of the immune system, and the synthesis of several essential vitamins. Due to its critical role in shaping human survival and its modulating impact on body metabolisms, the gut microbial community has been referred to as "the forgotten organ" by O`Hara et al. (2006) [1]. Several studies have demonstrated that chemical interaction between the members of bacterial cells in the gut is responsible for shaping the overall microbial community. Recent advances in phytochemical research have generated a lot of interest in finding new, effective, and safer alternatives to modern chemical-based medicines. In the context of antimicrobial research various plant extracts have been identified with Quorum Sensing Inhibitory (QSI) activities among bacterial cells. This review focuses on the mechanism of quorum sensing and quorum sensing inhibitors isolated from natural sources.

Keywords: Quorum sensing; anti-microbial resistance; gene expression profiles; gut microbiota; phytochemicals; quorum sensing inhibitors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Anti-Bacterial Agents / pharmacology
  • Anti-Bacterial Agents / therapeutic use
  • Bacterial Infections / drug therapy*
  • Bacterial Infections / immunology
  • Biofilms / drug effects
  • Disease Models, Animal
  • Drug Resistance, Bacterial
  • Gastrointestinal Microbiome / drug effects*
  • Gastrointestinal Microbiome / immunology
  • Humans
  • Phytochemicals / pharmacology*
  • Phytochemicals / therapeutic use
  • Plant Extracts / pharmacology*
  • Plant Extracts / therapeutic use
  • Quorum Sensing / drug effects
  • Quorum Sensing / immunology

Substances

  • Anti-Bacterial Agents
  • Phytochemicals
  • Plant Extracts