The interactive effects of climate change and land use on boreal stream fish communities

Sci Total Environ. 2020 Jan 15:700:134518. doi: 10.1016/j.scitotenv.2019.134518. Epub 2019 Oct 8.

Abstract

Ongoing and projected climate change is likely to greatly alter co-occurring stressor mechanisms, yet these potential interactions remain poorly understood in natural freshwater systems worldwide. As the global biodiversity crisis deepens, successful conservation efforts will hinge on developing mechanistic multiple stressor frameworks that have been ground-truthed in natural systems containing complex species dynamics and ecological processes. Our study examined the combined and interacting effects of potential climate and land use stressors on boreal stream fishes using data from over 300 catchments across a broad 250,000 km2 region. To characterize boreal fish community health, we examined four indicators including species richness, total catch per unit effort, the proportion of lithophilic spawners (fish sensitive to sedimentation), and the assemblage tolerance index which provides a measurement of the overall community tolerance to disturbance. Land use stressors included total anthropogenic land use area and linear disturbance at multiple watershed scales as well as two site-specific habitat degradation indicators (dissolved oxygen and the proportion of fine substrate). Overall community richness and productivity were not negatively related to land use changes indicating potential compensatory dynamics (e.g. where intolerant species are replaced with more tolerant species as habitat quality degrades). In contrast, we observed declines for sensitive species, including highly valued salmonids, that varied depending on interactions between local climate, land use, and stream type. Sensitive species declines were concentrated in regions experiencing increased land use and warming, whereas increases were observed in cooler regions consistent with a subsidy-stress response. In addition, lithophilic spawners declined in watersheds experiencing warmer and wetter conditions owing to potential indirect effects on spawning habitat quality. Results from our study provide novel insight into complex climate and land use interactions occurring across a broad, real-world landscape, and highlight the potential for amplified species declines under future warming and land use scenarios.

Keywords: Antagonism; Cumulative land use; Fish community integrity; Multiple stressors; Subsidy-stress; Synergism.

MeSH terms

  • Animals
  • Biodiversity*
  • Climate Change*
  • Ecosystem*
  • Fishes*
  • Rivers*
  • Taiga