Repurposing radiotracers for myelin imaging: a study comparing 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol,11C-MeDAS, and 11C-PiB

Eur J Nucl Med Mol Imaging. 2020 Feb;47(2):490-501. doi: 10.1007/s00259-019-04516-z. Epub 2019 Nov 4.

Abstract

Purpose: Drugs promoting myelin repair represent a promising therapeutic approach in multiple sclerosis and several candidate molecules are currently being evaluated, fostering the need of a quantitative method to specifically measure myelin content in vivo. PET using the benzothiazole derivative 11C-PiB has been successfully used to quantify myelin content changes in humans. Stilbene derivatives, such as 11C-MeDAS, have also been shown to bind to myelin in animals and are considered a promising radiopharmaceutical class for myelin imaging. Fluorinated compounds from both classes are now commercially available and thus should constitute clinically useful myelin radiotracers. The aim of this study is to provide a head-to-head comparison of 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol, 11C-MeDAS, and 11C-PiB with regard to brain kinetics and binding in white matter (WM).

Methods: Four baboons underwent a 90-min dynamic PET scan for each radioligand. Arterial blood samples were collected during the exam for each radiotracer, except for 18F-florbetapir, to obtain a radiometabolite-corrected input function. Standardized uptake value ratio between 75 at 90 min (SUVR75-90), binding potential (BP) estimated with Logan method with input function, and distribution volume ratio (DVR) estimated with Logan reference method (using cerebellar gray matter as reference region) were calculated in WM and compared between tracers using mixed effect models.

Results: In WM, 18F-florbetapir had the highest SUVR75-90 (1.38 ± 0.03), followed by 18F-flutemetamol (1.34 ± 0.02), 18F-florbetaben (1.32 ± 0.07), 11C-MeDAS (1.27 ± 0.04), and 11C-PiB (1.25 ± 0.07). With regard to BP, 18F-florbetaben had the highest value (0.32 ± 0.06) compared with 18F-flutemetamol (0.20 ± 0.03), 11C-MeDAS (0.17 ± 0.03), and 11C-PiB (0.16 ± 0.03). No difference in DVR was detected between 18F-florbetaben (1.26 ± 0.06) and 18F-florbetapir (1.27 ± 0.03), but both were significantly higher in DVR than 18F-flutemetamol (1.17 ± 0.02), 11C-MeDAS (1.16 ± 0.03), and 11C-PiB (1.14 ± 0.02).

Conclusions: Given their higher binding and longer half-life, our study indicates that 18F-florbetapir and 18F-florbetaben are promising tracers for myelin imaging which are readily available for clinical application in demyelinating diseases.

Keywords: Benzothiazole; Multiple sclerosis; Myelin; PET imaging; Stilbene.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease*
  • Aniline Compounds
  • Animals
  • Benzothiazoles
  • Brain
  • Carbon Radioisotopes
  • Drug Repositioning
  • Ethylene Glycols
  • Humans
  • Myelin Sheath
  • Positron-Emission Tomography
  • Stilbenes*

Substances

  • Aniline Compounds
  • Benzothiazoles
  • Carbon Radioisotopes
  • Carbon-11
  • Ethylene Glycols
  • Stilbenes
  • flutemetamol
  • florbetapir
  • 4-(N-methylamino)-4'-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy)stilbene