Bi-frequency 3D ghost imaging with Haar wavelet transform

Opt Express. 2019 Oct 28;27(22):32349-32359. doi: 10.1364/OE.27.032349.

Abstract

Recently, ghost imaging has been attracting attention because its mechanism could lead to many applications inaccessible to conventional imaging methods. However, it is challenging for high-contrast and high-resolution imaging, due to its low signal-to-noise ratio (SNR) and the demand of high sampling rate in detection. To circumvent these challenges, we propose a ghost imaging scheme that exploits Haar wavelets as illuminating patterns with a bi-frequency light projecting system and frequency-selecting single-pixel detectors. This method provides a theoretically 100% image contrast and high-detection SNR, which reduces the requirement of high dynamic range of detectors, enabling high-resolution ghost imaging. Moreover, it can highly reduce the sampling rate (far below Nyquist limit) for a sparse object by adaptively abandoning unnecessary patterns during the measurement. These characteristics are experimentally verified with a resolution of 512×512 and a sampling rate lower than 5%. A high-resolution (1000×1000×1000) 3D reconstruction of an object is also achieved from multi-angle images.