Creep-Induced Screw Preload Loss of Carbon-Fiber Sheet Molding Compound at Elevated Temperature

Materials (Basel). 2019 Nov 1;12(21):3598. doi: 10.3390/ma12213598.

Abstract

The application of chopped-fiber reinforced polymers in screwed connections at high temperatures raises the question of creep under long-term loading. While up to now thermoplastic materials have mainly been the focus of attention when it comes to creep, this paper shows that thermoset carbon-fiber SMCs (sheet mold compounds) can also be affected by this phenomenon. Screwed connections were investigated regarding their loss of preload force at 120 °C ambient temperature. Additionally, strain-time diagrams were recorded at different stress levels at 120 °C in a creep test setup of a universal testing machine by using optical strain tracking of SMC coupons. The transverse modulus under compression in thickness direction was determined in the same test setup. For data application within a FEA (finite element analysis) software power law curves according to Norton-Bailey creep law were fitted in the strain-time graphs. The applicability of the obtained creep law was crosschecked with a test carried out on the loss of preload force of a screwed connection. The developed simulative methodology offers the possibility to simulate various mounting situations of the bolted connection and to investigate measures against the loss of preload force easily. A promising possibility to limit the loss of preload force due to creep was simulatively evaluated.

Keywords: composites; creep; numerical analysis; preload loss; relaxation; screw; sheet mold compound.