Dynamics of Awake Hippocampal-Prefrontal Replay for Spatial Learning and Memory-Guided Decision Making

Neuron. 2019 Dec 18;104(6):1110-1125.e7. doi: 10.1016/j.neuron.2019.09.012. Epub 2019 Oct 30.

Abstract

Spatial learning requires remembering and choosing paths to goals. Hippocampal place cells replay spatial paths during immobility in reverse and forward order, offering a potential mechanism. However, how replay supports both goal-directed learning and memory-guided decision making is unclear. We therefore continuously tracked awake replay in the same hippocampal-prefrontal ensembles throughout learning of a spatial alternation task. We found that, during pauses between behavioral trajectories, reverse and forward hippocampal replay supports an internal cognitive search of available past and future possibilities and exhibits opposing learning gradients for prediction of past and future behavioral paths, respectively. Coordinated hippocampal-prefrontal replay distinguished correct past and future paths from alternative choices, suggesting a role in recall of past paths to guide planning of future decisions for spatial working memory. Our findings reveal a learning shift from hippocampal reverse-replay-based retrospective evaluation to forward-replay-based prospective planning, with prefrontal readout of memory-guided paths for learning and decision making.

Keywords: decision making; hippocampus; planning; prefrontal cortex; prospection; replay; retrospection; sharp-wave ripple; spatial learning; working memory.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Decision Making / physiology*
  • Hippocampus / physiology*
  • Male
  • Memory, Short-Term / physiology*
  • Prefrontal Cortex / physiology*
  • Rats
  • Rats, Long-Evans
  • Spatial Learning / physiology*
  • Wakefulness