Elucidating the composition of PtAg surface alloys with atomic-scale imaging and spectroscopy

J Chem Phys. 2019 Oct 28;151(16):164705. doi: 10.1063/1.5124687.

Abstract

Silver-based heterogeneous catalysts, modified with a range of elements, have found industrial application in several reactions in which selectivity is a challenge. Alloying small amounts of Pt into Ag has the potential to greatly enhance the somewhat low reactivity of Ag while maintaining high selectivity and resilience to poisoning. This single-atom alloy approach has had many successes for other alloy combinations but has yet to be investigated for PtAg. Using scanning tunneling microscopy (STM) and STM-based spectroscopy, we characterized the atomic-scale surface structure of a range of submonolayer amounts of Pt deposited on and in Ag(111) as a function of temperature. Near room temperature, intermixing of PtAg results in multiple metastable structures on the surface. Increasing the alloying temperature results in a higher concentration of isolated Pt atoms in the regions near Ag step edges as well as direct exchange of Pt atoms into Ag terraces. Furthermore, STM-based work function measurements allow us to identify Pt rich areas of the samples. We use CO temperature programmed desorption to confirm our STM assignments and quantify CO binding strengths that are compared with theory. Importantly, we find that CO, a common catalyst poison, binds more weakly to Pt atoms in the Ag surface than extended Pt ensembles. Taken together, this atomic-scale characterization of model PtAg surface alloys provides a starting point to investigate how the size and structure of Pt ensembles affect reaction pathways on the alloy and can inform the design of alloy catalysts with improved catalytic properties and resilience to poisoning.