Synthesis, Spectroscopy and Electrochemistry in Relation to DFT Computed Energies of Ferrocene- and Ruthenocene-Containing -Diketonato Iridium(III) Heteroleptic Complexes. Structure of [(2-Pyridylphenyl)2Ir(RcCOCHCOCH3]

Molecules. 2019 Oct 30;24(21):3923. doi: 10.3390/molecules24213923.

Abstract

A series of new ferrocene- and ruthenocene-containing iridium(III) heteroleptic complexes of the type [(ppy)2Ir(RCOCHCOR')], with ppy = 2-pyridylphenyl, R = Fc = FeII5-C5H4)(η5-C5H5) and R' = CH3 (1) or Fc (2), as well as R = Rc = RuII5-C5H4)(η5-C5H5) and R' = CH3 (3), Rc (4) or Fc (5) was synthesized via the reaction of appropriate metallocene-containing β-diketonato ligands with [(ppy)2(-Cl)Ir]2. The single crystal structure of 3 (monoclinic, P21/n, Z = 4) is described. Complexes 1-5 absorb light strongly in the region 280-480 nm the metallocenyl -diketonato substituents quench phosphorescence in 1-5. Cyclic and square wave voltammetric studies in CH2Cl2/[N(nBu)4][B(C6F5)4] allowed observation of a reversible IrIII/IV redox couple as well as well-resolved ferrocenyl (Fc) and ruthenocenyl (Rc) one-electron transfer steps in 1-5. The sequence of redox events is in the order Fc oxidation, then IrIII oxidation and finally ruthenocene oxidation, all in one-electron transfer steps. Generation of IrIV quenched phosphorescence in 6, [(ppy)2Ir(H3CCOCHCOCH3)]. This study made it possible to predict the IrIII/IV formal reduction potential from Gordy scale group electronegativities, χR and/or ΣχR' of -diketonato pendent side groups as well as from DFT-calculated energies of the highest occupied molecular orbital of the species involved in the IrIII/IV oxidation at a 98 % accuracy level.

Keywords: betadiketone; crystal structure; electrochemistry; electronic spectrum; ferrocene; iridium; phosphorescence; ruthenocene; spectroelectrochemistry; substituent effects.

MeSH terms

  • Crystallography, X-Ray
  • Density Functional Theory*
  • Electrochemistry*
  • Iridium / chemistry
  • Models, Molecular
  • Organometallic Compounds / chemical synthesis*
  • Organometallic Compounds / chemistry*
  • Oxidation-Reduction
  • Spectrum Analysis*
  • Thermodynamics

Substances

  • Organometallic Compounds
  • ruthenocene
  • Iridium