Integrated analysis of competing endogenous RNA (ceRNA) networks in subacute stage of spinal cord injury

Gene. 2020 Feb 5:726:144171. doi: 10.1016/j.gene.2019.144171. Epub 2019 Oct 26.

Abstract

This study aims to investigate the genetic and epigenetic mechanisms involved in the pathogenesis of subacute stage of spinal cord injury (SCI). Gene-expression datasets associated with SCI were downloaded from the Gene Expression Omnibus (GEO) database, and differential expression analyses were performed in order to identify differentially expressed genes (DEGs). Multiple network types were constructed and analyzed, including protein-protein-interaction (PPI) network, miRNA-target network, lncRNA-associated competing endogenous RNA (ceRNA) network, and miRNA-transcription factor (TF)-target network. Cluster analyses were performed to identify significant modules. To verify the prediction accuracy of the in-silico identified molecules, qRT-PCR experiments were conducted. The results depicted the Ywhae gene as the hub gene with the highest degree in the PPI network. The ceRNA network identified specific genes (Flna, ID3, and HK2), miRNAs (miR-16-5p, miR-1958, and miR-185-5p), and lncRNAs (Neat1, Xist, and Malat1) as playing critical regulating roles in the pathological mechanisms of SCI. The miRNA-TF-gene interaction network identified four important TFs (Sp1, Trp53, Jun, and Rela). The miRNA-gene-TF interaction loops from the significant modules indicated that miR-325-3p can interact with the Asah1 gene and TF-Sp1 by forming a closed loop. The qRT-PCR experiments verified four selected genes (Flna, ID3, HK2, and Ywhae) and two selected TFs (Jun, and Sp1) as significantly up-regulated following SCI. The results indicated that four genes (Flna, ID3, HK2, and Ywhae), four transcription factors (Sp1, Trp53, Jun, and RelA), two miRNAs (miR-16-5p and miR-325-3p), and three lncRNAs (Neat1, Xist, and Malat1) are likely to be involved in the molecular mechanisms underlying the subacute stage of SCI. These findings uncover putative pathogenic mechanisms involved in SCI and might bear translation significance for future research towards therapeutic development.

MeSH terms

  • Animals
  • Gene Expression Profiling / methods
  • Gene Expression Regulation, Neoplastic / genetics
  • Gene Regulatory Networks / genetics*
  • Mice
  • Mice, Inbred C57BL
  • MicroRNAs / genetics*
  • Protein Interaction Maps / genetics
  • RNA, Long Noncoding / genetics*
  • Spinal Cord Injuries / genetics*
  • Transcription Factors / genetics
  • Up-Regulation / genetics

Substances

  • MicroRNAs
  • RNA, Long Noncoding
  • Transcription Factors