Imaging Inflammation in Atherosclerosis with CXCR4-Directed 68Ga-Pentixafor PET/CT: Correlation with 18F-FDG PET/CT

J Nucl Med. 2020 May;61(5):751-756. doi: 10.2967/jnumed.119.234484. Epub 2019 Oct 25.

Abstract

C-X-C motif chemokine receptor 4 (CXCR4) is expressed on the surface of various cell types involved in atherosclerosis, with a particularly rich receptor expression on macrophages and T cells. First pilot studies with 68Ga-pentixafor, a novel CXCR4-directed PET tracer, have shown promise to noninvasively image inflammation within atherosclerotic plaques. The aim of this retrospective study was to investigate the performance of 68Ga-pentixafor PET/CT for imaging atherosclerosis in comparison to 18F-FDG PET/CT. Methods: Ninety-two patients (37 women and 55 men; mean age, 62 ± 10 y) underwent 68Ga-pentixafor and 18F-FDG PET/CT for staging of oncologic diseases. In these subjects, lesions in the walls of large arteries were identified using morphologic and PET criteria for atherosclerosis (n = 652). Tracer uptake was measured and adjusted for vascular lumen (background) signal by calculation of target-to-background ratios (TBRs) by 2 investigators masked to the other PET scan. On a lesion-to-lesion and patient basis, the TBRs of both PET tracers were compared and additionally correlated to the degree of arterial calcification as quantified in CT. Results: On a lesion-to-lesion basis, 68Ga-pentixafor and 18F-FDG uptake showed a weak correlation (r = 0.28; P < 0.01). 68Ga-pentixafor PET identified more lesions (n = 290; TBR ≥ 1.6, P < 0.01) and demonstrated higher uptake than 18F-FDG PET (1.8 ± 0.5 vs. 1.4 ± 0.4; P < 0.01). The degree of plaque calcification correlated negatively with both 68Ga-pentixafor and 18F-FDG uptake (r = -0.38 vs. -0.31, both P < 0.00001). Conclusion: CXCR4-directed imaging of the arterial wall with 68Ga-pentixafor PET/CT identified more lesions than 18F-FDG PET/CT, with only a weak correlation between tracers. Further studies to elucidate the underlying biologic mechanisms and sources of CXCR4 positivity, and to investigate the clinical utility of chemokine receptor-directed imaging of atherosclerosis, are highly warranted.

Keywords: CXCR4; FDG; atherosclerotic lesions; molecular imaging; plaque.

MeSH terms

  • Atherosclerosis / diagnostic imaging*
  • Atherosclerosis / metabolism
  • Biological Transport
  • Coordination Complexes*
  • Female
  • Fluorodeoxyglucose F18* / metabolism
  • Humans
  • Inflammation / diagnostic imaging
  • Male
  • Middle Aged
  • Peptides, Cyclic*
  • Positron Emission Tomography Computed Tomography*
  • Receptors, CXCR4 / metabolism*
  • Retrospective Studies

Substances

  • 68Ga-pentixafor
  • CXCR4 protein, human
  • Coordination Complexes
  • Peptides, Cyclic
  • Receptors, CXCR4
  • Fluorodeoxyglucose F18