A Software-Defined Radio Receiver for Wireless Recording From Freely Behaving Animals

IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1645-1654. doi: 10.1109/TBCAS.2019.2949233. Epub 2019 Oct 24.

Abstract

To eliminate tethering effects on the small animals' behavior during electrophysiology experiments, such as neural interfacing, a robust and wideband wireless data link is needed for communicating with the implanted sensing elements without blind spots. We present a software-defined radio (SDR) based scalable data acquisition system, which can be programmed to provide coverage over standard-sized or customized experimental arenas. The incoming RF signal with the highest power among SDRs is selected in real-time to prevent data loss in the presence of spatial and angular misalignments between the transmitter (Tx) and receiver (Rx) antennas. A 32-channel wireless neural recording system-on-a-chip (SoC), known as WINeRS-8, is embedded in a headstage and transmits digitalized raw neural signals, which are sampled at 25 kHz/ch, at 9 Mbps via on-off keying (OOK) of a 434 MHz RF carrier. Measurement results show that the dual-SDR Rx system reduces the packet loss down to 0.12%, on average, by eliminating the blind spots caused by the moving Tx directionality. The system operation is verified in vivo on a freely behaving rat and compared with a commercial hardwired system.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Action Potentials
  • Animals
  • Behavior, Animal / physiology*
  • Electrodes, Implanted
  • Equipment Design / methods*
  • Rats
  • Signal Processing, Computer-Assisted
  • Software
  • Wearable Electronic Devices
  • Wireless Technology / instrumentation*