Migration behaviors of leaky dielectric droplets with electric and hydrodynamic forces

Phys Rev E. 2019 Sep;100(3-1):033113. doi: 10.1103/PhysRevE.100.033113.

Abstract

The external electric field enables separation and transport of droplets effectively in microfluidic devices. Herein, a volume-of-fluid (VOF) + level-set (LS) + smoothed physical parameters (SPP) method associated with the dynamically adaptive grid technique is extended to simulate three-dimensional leaky dielectric droplets in the electric field. The effects of electric and hydrodynamic forces on droplet behaviors are investigated. It is demonstrated that the electric force could act toward the outside or inside of a droplet and produce different droplet deformations. For the dielectrophoretic migration of droplets in the nonuniform electric field, the electric force has a dominant effect. It is found that when the electric conductivity ratio is greater than 1, an unbalanced electric force toward a stronger electric field is generated, bringing about the migration toward a stronger electric field. In contrast, when the electric conductivity ratio is smaller than 1, the unbalanced electric force direction is reversed and the droplet migrates toward a weaker electric field. The hydrodynamic force produces little promotion or hindrance to droplet migration. A greater permittivity ratio usually produces greater electric force and migration velocity. The droplet migrates along one direction in a symmetric nonuniform electric field but tends to migrate along the normal direction of electric potential profiles in an asymmetric nonuniform electric field.