Classification of diffusion modes in single-particle tracking data: Feature-based versus deep-learning approach

Phys Rev E. 2019 Sep;100(3-1):032410. doi: 10.1103/PhysRevE.100.032410.

Abstract

Single-particle trajectories measured in microscopy experiments contain important information about dynamic processes occurring in a range of materials including living cells and tissues. However, extracting that information is not a trivial task due to the stochastic nature of the particles' movement and the sampling noise. In this paper, we adopt a deep-learning method known as a convolutional neural network (CNN) to classify modes of diffusion from given trajectories. We compare this fully automated approach working with raw data to classical machine learning techniques that require data preprocessing and extraction of human-engineered features from the trajectories to feed classifiers like random forest or gradient boosting. All methods are tested using simulated trajectories for which the underlying physical model is known. From the results it follows that CNN is usually slightly better than the feature-based methods, but at the cost of much longer processing times. Moreover, there are still some borderline cases in which the classical methods perform better than CNN.