Hydrothermal Synthesis of N-Doped Graphene for Supercapacitor Electrodes

J Nanosci Nanotechnol. 2020 May 1;20(5):3258-3264. doi: 10.1166/jnn.2020.17388.

Abstract

N-doped graphene based on graphene oxide and 3,3',4,4'-tetraaminodiphenyl oxide (TADPO) was obtained using a one-step hydrothermal process. The resulting materials were fully characterized using elemental analysis, infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, X-ray diffraction, scanning electron micrographs, and transmission electron microscopy. The findings reveal that benzimidazole rings were formed during the reaction, and the mass content of nitrogen in the obtained material varied from 12.3% to 14.7%, depending on the initial concentration of TADPO. Owing to the redox activity of benzimidazole rings, the new N-doped graphene materials demonstrated a high specific capacitance, reaching 340 F g-1 at 0.1 A g-1, which was significantly higher than that of the sample of reduced graphene oxide obtained under similar conditions without the use of TADPO (169 F g-1 at 0.1 A g-1). The resulting material also exhibited good cyclic stability after 5000 cycles.