Hyperthermia, Cytotoxicity, and Cellular Uptake Properties of Manganese and Zinc Ferrite Magnetic Nanoparticles Synthesized by a Polyol-Mediated Process

Nanomaterials (Basel). 2019 Oct 18;9(10):1489. doi: 10.3390/nano9101489.

Abstract

Manganese and zinc ferrite magnetic nanoparticles (MNPs) were successfully synthesizedusing the polyol method in ethylene glycol and were found to have high saturation magnetizationvalues (90-95 emu/g at 4 K) when formed by ~30-nm crystallites assembled in an ~80-nm multicorestructure. Hyperthermia data revealed a sigmoidal dependence of the specific absorption rate (SAR)on the alternating magnetic field (AMF) amplitude, with remarkable saturation SAR values in waterof ~1200 W/gFe+Mn and ~800 W/gFe+Zn for the Mn and Zn ferrites, respectively. The immobilizationof the MNPs in a solid matrix reduced the maximum SAR values by ~300 W/gFe+Mn, Zn for bothferrites. The alignment of the MNPs in a uniform static magnetic field, before their immobilizationin a solid matrix, significantly increased their heating performance. Toxicity assays performed infour cell lines revealed a lower toxicity for the Mn ferrites, while in the case of the Zn ferrites, only~50% of cells were viable upon their incubation for 24 h with 0.2 mg/mL of MNPs. Cellular uptakeexperiments revealed that both MNPs entered the cells in a time-dependent manner, as they werefound initially in endosomes and later in the cytosol. All of the studied cell lines were more sensitiveto the ZnFe2O4 MNPs.

Keywords: biodegradation; cancer cell uptake; cytotoxicity; endocytosis; ethylene glycol; magnetic hyperthermia; manganese and zinc ferrite magnetic nanoparticles; polyol method; specific absorption rate.