Experimental Evidence for a State-Point-Independent Density-Scaling Exponent in Ionic Liquids

Phys Rev Lett. 2019 Sep 20;123(12):125702. doi: 10.1103/PhysRevLett.123.125702.

Abstract

This Letter addresses a fundamental issue of condensed-matter physics, which is the validity of the density-scaling concept. For this purpose, the ambient and high-pressure conductivity measurements of two selected ionic liquids (ILs), with the different contribution of H-bonding interactions, were performed in the dynamic range of 13 orders of magnitude and corresponding to the density changes as large as 20%. All experimental data obtained within one compound are shown to superimpose each other when plotted as a function of ρ^{γ}/T. These results clearly show that for studied ILs the scaling exponent is a state-point-independent parameter that is in odds with the recent findings for van der Waals liquid [Sanz et al., Phys. Rev. Lett. 122, 055501 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.055501].