Wearables Meet IoT: Synergistic Personal Area Networks (SPANs)

Sensors (Basel). 2019 Oct 3;19(19):4295. doi: 10.3390/s19194295.

Abstract

Wearable monitoring and mobile health (mHealth) revolutionized healthcare diagnostics and delivery, while the exponential increase of deployed "things" in the Internet of things (IoT) transforms our homes and industries. "Things" with embedded activity and vital sign sensors that we refer to as "smart stuff" can interact with wearable and ambient sensors. A dynamic, ad-hoc personal area network can span multiple domains and facilitate processing in synergistic personal area networks-SPANs. The synergy of information from multiple sensors can provide: (a) New information that cannot be generated from existing data alone, (b) user identification, (c) more robust assessment of physiological signals, and (d) automatic annotation of events/records. In this paper, we present possible new applications of SPANs and results of feasibility studies. Preliminary tests indicate that users interact with smart stuff-in our case, a smart water bottle-dozens of times a day and sufficiently long to collect vital signs of the users. Synergistic processing of sensors from the smartwatch and objects of everyday use may provide user identification and assessment of new parameters that individual sensors could not generate, such as pulse wave velocity (PWV) and blood pressure. As a result, SPANs facilitate seamless monitoring and annotation of vital signs dozens of times per day, every day, every time the smart object is used, without additional setup of sensors and initiation of measurements. SPANs creates a dynamic "opportunistic bubble" for ad-hoc integration with other sensors of interest around the user, wherever they go. Continuous long-term monitoring of user's activity and vital signs can provide better diagnostic procedures and personalized feedback to motivate a proactive approach to health and wellbeing.

Keywords: IoT; aging in place; ambient-assisted living; health monitoring; mHealth; smart stuff; wearable monitoring; wireless body area networks.

Publication types

  • Review