Evaluation of polyamines as marker of melanoma cell proliferation and differentiation by an improved high-performance liquid chromatographic method

Amino Acids. 2019 Nov;51(10-12):1623-1631. doi: 10.1007/s00726-019-02799-y. Epub 2019 Oct 15.

Abstract

The differentiation therapy is focused on the identification of new agents able to impair the proliferative and metastatic potential of cancer cells through the induction of differentiation. Although several markers of cell differentiation on tumor cells have been identified, their causal relationship with neoplastic competence has not been characterized in sufficient detail to propose their use as new pharmacological targets useful for the design of new differentiation agents. Polyamine level in cancer cells and in body fluids was proposed as potential marker of cell proliferation and differentiation. The main advantage of this marker is the possibility to evaluate the antineoplastic activity of new drugs able to induce cell differentiation and consequently to inhibit tumor growth and metastasis. The presented report shows a simply and highly reproducible reverse-phase high-performance liquid chromatographic (HPLC) method for the determination of ortho-phthalaldehyde (OPA) derivatives of polyamines: putrescine (PUT), cadaverine (CAD), spermidine (SPD) and spermine (SPM). The novelty of this method is the fluorescence response for OPA-derivate of SPM, generally low in other procedures, that has been significantly improved by the use of a fully endcapped packing material with minimal silanol interactions. The limits of detection for PUT, CAD, SPD and SPM were 0.6, 0.7, 0.8, and 0.4 pmol/mL, respectively. The analysis time was ≤ 20 min, and the relative recovery rate was of about 97%. To verify the usefulness of this method, it has been validated in a murine melanoma cell line (B16-F10) treated with two theophylline derivatives (namely 8-chlorotheophylline and 8-bromotheophylline). These two compounds increased the activity of tissue transglutaminase (TG2) and the synthesis of melanin, two recognized markers of melanoma cell differentiation, and significantly reduced the levels of intracellular polyamines.

Keywords: Differentiation therapy; Melanoma cells; OPA derivatization; Polyamines.

MeSH terms

  • Animals
  • Biomarkers, Tumor / chemistry
  • Biomarkers, Tumor / metabolism
  • Cell Differentiation
  • Cell Line, Tumor
  • Cell Proliferation
  • Chromatography, High Pressure Liquid / methods*
  • GTP-Binding Proteins / metabolism
  • Indicators and Reagents
  • Limit of Detection
  • Melanins / metabolism
  • Melanoma / metabolism
  • Melanoma / pathology*
  • Mice
  • Polyamines / chemistry
  • Polyamines / metabolism*
  • Protein Glutamine gamma Glutamyltransferase 2
  • Transglutaminases / metabolism
  • o-Phthalaldehyde / chemistry

Substances

  • Biomarkers, Tumor
  • Indicators and Reagents
  • Melanins
  • Polyamines
  • o-Phthalaldehyde
  • Protein Glutamine gamma Glutamyltransferase 2
  • Transglutaminases
  • GTP-Binding Proteins