Reducing the energy cost of walking in older adults using a passive hip flexion device

J Neuroeng Rehabil. 2019 Oct 15;16(1):117. doi: 10.1186/s12984-019-0599-4.

Abstract

Background: Elevated energy cost is a hallmark feature of gait in older adults. As such, older adults display a general avoidance of walking which contributes to declining health status and risk of morbidity. Exoskeletons offer a great potential for lowering the energy cost of walking, however their complexity and cost often limit their use. To overcome some of these issues, in the present work we propose a passive wearable assistive device, namely Exoband, that applies a torque to the hip flexors thus reducing the net metabolic power of wearers.

Methods: Nine participants (age: 62.1 ± 5.6 yr; height: 1.71 ± 0.05 m; weight: 76.3 ± 11.9 kg) walked on a treadmill at a speed of 1.1 m/s with and without the Exoband. Metabolic power was measured by indirect calorimetry and spatio-temporal parameters measured using an optical measurement system. Heart rate and ratings of perceived exertion were recorded during data collection to monitor relative intensity of the walking trials.

Results: The Exoband was able to provide a consistent torque (~ 0.03-0.05 Nm/kg of peak torque) to the wearers. When walking with the Exoband, participants displayed a lower net metabolic power with respect to free walking (- 3.3 ± 3.0%; p = 0.02). There were no differences in spatio-temporal parameters or relative intensities when walking with or without the Exoband.

Conclusions: This study demonstrated that it is possible to reduce metabolic power during walking in older adults with the assistance of a passive device that applies a torque to the hip joint. Wearable, lightweight and low-cost devices such as the Exoband have the potential to make walking less metabolically demanding for older individuals.

Keywords: Exoskeletons; Metabolic power; Older adults; Walking.

Publication types

  • Clinical Trial

MeSH terms

  • Aged
  • Biomechanical Phenomena / physiology
  • Energy Metabolism / physiology*
  • Exercise Test
  • Female
  • Hip Joint / physiology*
  • Humans
  • Male
  • Middle Aged
  • Self-Help Devices*
  • Walking / physiology*