Encapsulation of Plant-derived Bioactive Ingredients through Electrospraying for Nutraceuticals and Functional Foods Applications

Curr Med Chem. 2020;27(17):2872-2886. doi: 10.2174/0929867326666191010115343.

Abstract

The electrospraying technique, which consists of electrohydrodynamic atomization of polymeric fluids, can be used to generate dry nano- and microparticles by subjecting a polymer solution, suspension or melt to a high voltage (typically in the range of 7-20 kV) electric field. This potential can be exploited for developing nano- and microencapsulation structures under mild temperature conditions. Thus, it constitutes a promising alternative to conventional microencapsulation techniques for sensitive ingredients, like most plant-derived bioactive compounds, especially for their application in the food sector. Given the importance of plants as one of the major sources of dietary bioactive compounds, significant attention has been recently paid to research the encapsulation of phytochemicals through novel techniques such as electrospraying, aiming to provide new tools for the development of innovative functional food products and nutraceuticals. In this review, the latest advances in the application of electrospraying for nano- and microencapsulation of phytochemicals are discussed, with a focus on their potential use in the food sector.

Keywords: Electrospraying; Nutraceuticals; electrospraying technique; encapsulation; nano- and microencapsulation; phytochemicals..

Publication types

  • Review

MeSH terms

  • Dietary Supplements
  • Functional Food*
  • Phytochemicals
  • Polymers

Substances

  • Phytochemicals
  • Polymers