Temperature sensitivity patterns of carbon and nitrogen processes in decomposition of boreal organic soils - Quantification in different compounds and molecule sizes based on a multifactorial experiment

PLoS One. 2019 Oct 10;14(10):e0223446. doi: 10.1371/journal.pone.0223446. eCollection 2019.

Abstract

Climate warming and organic matter decomposition are connected in a recursive manner; this recursion can be described by temperature sensitivity. We conducted a multifactorial laboratory experiment to quantify the temperature sensitivity of organic carbon (C) and nitrogen (N) decomposition processes of common boreal organic soils. We incubated 36 mor and 36 slightly decomposed Carex-Sphagnum peat samples in a constant moisture and ambient temperature for 6 months. The experiment included three temperature and two moisture levels and two food web manipulations (samples with and without fungivore enchytraeid worms). We determined the release of carbon dioxide (CO2) and dissolved organic carbon (DOC) in seven molecular size classes together with ammonium N and dissolved organic N in low molecular weight and high molecular weight fractions. The temperature sensitivity function Q10 was fit to the data. The C and N release rate was almost an order of magnitude higher in mor than in peat. Soil fauna increased the temperature sensitivity of C release. Soil fauna played a key role in N release; when fauna was absent in peat, the N release was ceased. The wide range of the studied C and N compounds and treatments (68 Q10 datasets) allowed us to recognize five different temperature sensitivity patterns. The most common pattern (37 out of 68) was a positive upwards temperature response, which was observed for CO2 and DOC release. A negative downward pattern was observed for extractable organic nitrogen and microbial C. Sixteen temperature sensitivity patterns represented a mixed type, where the Q10function was not applicable, as this does not allow changing the sign storage change rate with increasing or decreasing temperature. The mixed pattern was typically connected to intermediate decomposition products, where input and output fluxes with different temperature sensitivities may simultaneously change the storage. Mixed type was typical for N processes. Our results provide useful parameterization for ecosystem models that describe the feedback loop between climate warming, organic matter decomposition, and productivity of N-limited vegetation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Annelida / physiology
  • Carbon / chemistry*
  • Carbon Dioxide / analysis
  • Humidity
  • Nitrogen / chemistry*
  • Organic Chemicals / chemistry*
  • Soil / chemistry*
  • Temperature*

Substances

  • Organic Chemicals
  • Soil
  • Carbon Dioxide
  • Carbon
  • Nitrogen

Grants and funding

Three grants from the Academy of Finland were used (https://www.aka.fi/en/): Project 121991 to AL; Project 311925; and Project 326818. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.