A Phase I Trial Using a Multitargeted Recombinant Adenovirus 5 (CEA/MUC1/Brachyury)-Based Immunotherapy Vaccine Regimen in Patients with Advanced Cancer

Oncologist. 2020 Jun;25(6):479-e899. doi: 10.1634/theoncologist.2019-0608. Epub 2019 Oct 8.

Abstract

Lessons learned: Concurrent ETBX-011, ETBX-051, and ETBX-061 can be safely administered to patients with advanced cancer. All patients developed CD4+ and/or CD8+ T-cell responses after vaccination to at least one tumor-associated antigen (TAA) encoded by the vaccine; 5/6 patients (83%) developed MUC1-specific T cells, 4/6 (67%) developed CEA-specific T cells, and 3/6 (50%) developed brachyury-specific T cells. The presence of adenovirus 5-neutralizing antibodies did not prevent the generation of TAA-specific T cells.

Background: A novel adenovirus-based vaccine targeting three human tumor-associated antigens-CEA, MUC1, and brachyury-has demonstrated antitumor cytolytic T-cell responses in preclinical animal models of cancer.

Methods: This open-label, phase I trial evaluated concurrent administration of three therapeutic vaccines (ETBX-011 = CEA, ETBX-061 = MUC1 and ETBX-051 = brachyury). All three vaccines used the same modified adenovirus 5 (Ad5) vector backbone and were administered at a single dose level (DL) of 5 × 1011 viral particles (VP) per vector. The vaccine regimen consisting of all three vaccines was given every 3 weeks for three doses then every 8 weeks for up to 1 year. Clinical and immune responses were evaluated.

Results: Ten patients enrolled on trial (DL1 = 6 with 4 in the DL1 expansion cohort). All treatment-related adverse events were temporary, self-limiting, grade 1/2 and included injection site reactions and flu-like symptoms. Antigen-specific T cells to MUC1, CEA, and/or brachyury were generated in all patients. There was no evidence of antigenic competition. The administration of the vaccine regimen produced stable disease as the best clinical response.

Conclusion: Concurrent ETBX-011, ETBX-051, and ETBX-061 can be safely administered to patients with advanced cancer. Further studies of the vaccine regimen in combination with other agents, including immune checkpoint blockade, are planned.

Publication types

  • Clinical Trial, Phase I

MeSH terms

  • Adenoviridae / genetics
  • Animals
  • Cancer Vaccines*
  • Carcinoembryonic Antigen
  • Fetal Proteins
  • Humans
  • Immunotherapy
  • Mucin-1
  • Neoplasms* / therapy
  • T-Box Domain Proteins

Substances

  • Cancer Vaccines
  • Carcinoembryonic Antigen
  • Fetal Proteins
  • MUC1 protein, human
  • Mucin-1
  • T-Box Domain Proteins
  • Brachyury protein