Evolved Aliphatic Halogenases Enable Regiocomplementary C-H Functionalization of a Pharmaceutically Relevant Compound

Angew Chem Int Ed Engl. 2019 Dec 16;58(51):18535-18539. doi: 10.1002/anie.201907245. Epub 2019 Nov 18.

Abstract

Non-heme iron halogenases are synthetically valuable biocatalysts that are capable of halogenating unactivated sp3 -hybridized carbon centers with high stereo- and regioselectivity. The reported substrate scope of these enzymes, however, is limited primarily to the natural substrates and their analogues. We engineered the halogenase WelO5* for chlorination of a martinelline-derived fragment. Using structure-guided evolution, a halogenase variant with a more than 290-fold higher total turnover number and a 400-fold higher apparent kcat compared to the wildtype enzyme was generated. Moreover, we identified key positions in the active site that allow direction of the halogen to different positions in the target substrate. This is the first example of enzyme engineering to expand the substrate scope of a non-heme iron halogenase beyond the native indole-alkaloid-type substrates. The highly evolvable nature of WelO5* underscores the usefulness of this enzyme family for late-stage halogenation.

Keywords: C−H activation; biocatalysis; directed evolution; halogenases; non-heme iron enzymes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / metabolism*
  • Halogenation / genetics*
  • Humans
  • Molecular Structure
  • Substrate Specificity

Substances

  • Bacterial Proteins