Orbital-Selective Kondo Entanglement and Antiferromagnetic Order in USb_{2}

Phys Rev Lett. 2019 Sep 6;123(10):106402. doi: 10.1103/PhysRevLett.123.106402.

Abstract

In heavy-fermion compounds, the dual character of f electrons underlies their rich and often exotic properties like fragile heavy quasiparticles, a variety of magnetic orders and unconventional superconductivity. 5f-electron actinide materials provide a rich setting to elucidate the larger and outstanding issue of the competition between magnetic order and Kondo entanglement and, more generally, the interplay among different channels of interactions in correlated electron systems. Here, by using angle-resolved photoemission spectroscopy, we present the detailed electronic structure of USb_{2} and observe two different kinds of nearly flat bands in the antiferromagnetic state of USb_{2}. Polarization-dependent measurements show that these electronic states are derived from 5f orbitals with different characters; in addition, further temperature-dependent measurements reveal that one of them is driven by the Kondo correlations between the 5f electrons and conduction electrons, while the other reflects the dominant role of the magnetic order. Our results on the low-energy electronic excitations of USb_{2} implicate orbital selectivity as an important new ingredient for the competition between Kondo correlations and magnetic order and, by extension, in the rich landscape of quantum phases for strongly correlated f electron systems.