Thermal Engineering of Metal-Organic Frameworks for Adsorption Applications: A Molecular Simulation Perspective

ACS Appl Mater Interfaces. 2019 Oct 23;11(42):38697-38707. doi: 10.1021/acsami.9b12533. Epub 2019 Oct 9.

Abstract

Thermal engineering of metal-organic frameworks for adsorption-based applications is very topical in view of their industrial potential, in particular, since heat management and thermal stability have been identified as important obstacles. Hence, a fundamental understanding of the structural and chemical features underpinning their intrinsic thermal properties is highly sought-after. Herein, we investigate the nanoscale behavior of a diverse set of frameworks using molecular simulation techniques and critically compare properties such as thermal conductivity, heat capacity, and thermal expansion with other classes of materials. Furthermore, we propose a hypothetical thermodynamic cycle to estimate the temperature rise associated with adsorption for the most important greenhouse and energy-related gases (CO2 and CH4). This macroscopic response on the heat of adsorption connects the intrinsic thermal properties with the adsorption properties and allows us to evaluate their importance.

Keywords: gas adsorption; heat capacity; metal−organic frameworks; molecular simulations; thermal conductivity; thermal engineering; thermal expansion.