Optimization of Quantum Dot Thin Films using Electrohydrodynamic Jet Spraying for Solution-Processed Quantum Dot Light-Emitting Diodes

Sci Rep. 2019 Sep 25;9(1):13885. doi: 10.1038/s41598-019-50181-5.

Abstract

The electrohydrodynamic (EHD) jet spraying process is a good method for making quantum dot (QD) layers in light-emitting diodes (LEDs). However, controlling the morphology and large-scale fabrication of the QD layers are critical for realizing all-solution-processed QD-LEDs with high performance. Three spraying techniques were used with the EHD jet spraying technique: a big circular film method, a spiral-line method, and a straight-line method. These techniques were used to obtain QD films with good uniformity. The straight-line spray showed the most promise to obtain a uniform QD layer with large area, and QD-LEDs made with this method showed better performance with a low turn-on voltage of 3.0 V, a luminance of 7801 cd/m2, and a maximum current efficiency of 2.93 cd/A.