Excited-state proton transfer relieves antiaromaticity in molecules

Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20303-20308. doi: 10.1073/pnas.1908516116. Epub 2019 Sep 25.

Abstract

Baird's rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4n + 2] π-aromatic in the ground state, become [4n + 2] π-antiaromatic in the first 1ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. o-Salicylic acid undergoes ESPT only in the "antiaromatic" S1 (1ππ*) state, but not in the "aromatic" S2 (1ππ*) state. Stokes' shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird's rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation.

Keywords: Baird’s rule; antiaromaticity; aromaticity; excited-state proton transfer; hydrogen bonding.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Electrons*
  • Hydroxyquinolines / chemistry*
  • Models, Molecular
  • Molecular Structure
  • Protons*
  • Quantum Theory*
  • Salicylic Acid / chemistry*

Substances

  • Hydroxyquinolines
  • Protons
  • Salicylic Acid