Understanding the Pathway of Gas Hydrate Formation with Porous Materials for Enhanced Gas Separation

Research (Wash D C). 2019 May 28:2019:3206024. doi: 10.34133/2019/3206024. eCollection 2019.

Abstract

The reason that the stoichiometry of gas to water in artificial gas hydrates formed on porous materials is much higher than that in nature is still ambiguous. Fortunately, based on our experimental thermodynamic and kinetic study on the gas hydrate formation behavior with classic ordered mesoporous carbon CMK-3 and irregular porous activated carbon combined with density functional theory calculations, we discover a microscopic pathway of the gas hydrate formation on porous materials. Two interesting processes including (I) the replacement of water adsorbed on the carbon surface by gas and (II) further replacement of water in the pore by gas accompanied with the gas condensation in the pore and growth of gas hydrate crystals out of the pore were deduced. As a result, a great enhancement of the selectivity and regeneration for gas separation was achieved by controlling the gas hydrate formation behavior accurately.