HMGB1-triggered inflammation inhibition of notoginseng leaf triterpenes against cerebral ischemia and reperfusion injury via MAPK and NF-κB signaling pathways

Biomolecules. 2019 Sep 20;9(10):512. doi: 10.3390/biom9100512.

Abstract

Ischemic stroke is a clinically common cerebrovascular disease whose main risks include necrosis, apoptosis and cerebral infarction, all caused by cerebral ischemia and reperfusion (I/R) injury. This process has particular significance for the treatment of stroke patients. Notoginseng leaf triterpenes (PNGL), as a valuable medicine, have been discovered to have neuroprotective effects. However, it was not confirmed that whether PNGL may possess neuroprotective effects against cerebral I/R injury. To explore the neuroprotective effects of PNGL and their underlying mechanisms, a middle cerebral artery occlusion/reperfusion (MCAO/R) model was established. In vivo results suggested that in MCAO/R model rats, PNGL pretreatment (73.0, 146, 292 mg/kg) remarkably decreased infarct volume, reduced brain water content, and improved neurological functions; moreover, PNGL (73.0, 146, 292 mg/kg) significantly alleviated blood-brain barrier (BBB) disruption and inhibited neuronal apoptosis and neuronal loss caused by cerebral I/R injury, while PNGL with a different concertation (146, 292 mg/kg) significantly reduced the concentrations of IL-6, TNF-α, IL-1 β, and HMGB1 in serums in a dose-dependent way, which indicated that inflammation inhibition could be involved in the neuroprotective effects of PNGL. The immunofluorescence and western blot analysis showed PNGL decreased HMGB1 expression, suppressed the HMGB1-triggered inflammation, and inhibited microglia activation (IBA1) in hippocampus and cortex, thus dose-dependently downregulating inflammatory cytokines including VCAM-1, MMP-9, MMP-2, and ICAM-1 concentrations in ischemic brains. Interestingly, PNGL administration (146 mg/kg) significantly downregulated the levels of p-P44/42, p-JNK1/2 and p-P38 MAPK, and also inhibited expressions of the total NF-κB and phosphorylated NF-κB in ischemic brains, which was the downstream pathway triggered by HMGB1. All of these results indicated that the protective effects of PNGL against cerebral I/R injury could be associated with inhibiting HMGB1-triggered inflammation, suppressing the activation of MAPKs and NF-κB, and thus improved cerebral I/R-induced neuropathological changes. This study may offer insight into discovering new active compounds for the treatment of ischemic stroke.

Keywords: HMGB1; MAPK; NF-κB; cerebral ischemia and reperfusion injury; inflammation; notoginseng leaf triterpenes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Blood-Brain Barrier / drug effects
  • Brain Infarction / metabolism
  • Brain Infarction / prevention & control*
  • Cytokines / metabolism
  • Disease Models, Animal
  • Dose-Response Relationship, Drug
  • Gene Expression Regulation / drug effects
  • HMGB1 Protein / metabolism*
  • Infarction, Middle Cerebral Artery / complications
  • Infarction, Middle Cerebral Artery / drug therapy*
  • Infarction, Middle Cerebral Artery / etiology
  • Male
  • Mitogen-Activated Protein Kinases / metabolism
  • NF-kappa B / metabolism
  • Panax notoginseng / chemistry*
  • Plant Leaves / chemistry
  • Rats
  • Reperfusion Injury / complications
  • Reperfusion Injury / drug therapy*
  • Reperfusion Injury / etiology
  • Signal Transduction / drug effects
  • Triterpenes / administration & dosage*
  • Triterpenes / pharmacology

Substances

  • Cytokines
  • HMGB1 Protein
  • Hbp1 protein, rat
  • NF-kappa B
  • Triterpenes
  • Mitogen-Activated Protein Kinases