Charge-transfer excited states in the donor/acceptor interface from large-scale GW calculations

J Chem Phys. 2019 Sep 21;151(11):114109. doi: 10.1063/1.5113944.

Abstract

Predicting the charge-transfer (CT) excited states across the donor/acceptor (D/A) interface is essential for understanding the charge photogeneration process in an organic solar cell. Here, we present a fragment-based GW implementation that can be applied to a D/A interface structure and thus enables accurate determination of the CT states. The implementation is based on the fragmentation approximation of the polarization function and the combined GW and Coulomb-hole plus screened exchange approximations for self-energies. The fragment-based GW is demonstrated by application to the pentacene/C60 interface structure containing more than 2000 atoms. The CT excitation energies were estimated from the quasiparticle energies and electron-hole screened Coulomb interactions; the computed energies are in reasonable agreement with experimental estimates from the external quantum efficiency measurements. We highlight the impact of the induced polarization effects on the electron-hole energetics. The proposed fragment-based GW method offers a first-principles tool to compute the quasiparticle energies and electronic excitation energies of organic materials.