Systematic Metabolic Engineering of Saccharomyces cerevisiae for Lycopene Overproduction

J Agric Food Chem. 2019 Oct 9;67(40):11148-11157. doi: 10.1021/acs.jafc.9b04519. Epub 2019 Sep 30.

Abstract

Lycopene is widely used in foods, cosmetics, nutritional supplements, and pharmaceuticals. Microbial production of lycopene has been intensively studied. However, there are few systematic engineering studies on Saccharomyces cerevisiae aimed at achieving high-yield lycopene production. In the current study, by employing a systematic optimization strategy, we screened the key lycopene biosynthetic genes, crtE, crtB, and crtI, from diverse organisms. By adjusting the copy number of these three key genes, knocking out endogenous bypass genes, increasing the supply of the precursor acetyl-CoA, balancing NADPH utilization, and regulating the GAL-inducible system, we constructed a high-yield lycopene-producing strain BS106, which can produce 310 mg/L lycopene in shake-flask fermentation, with gene expression controlled by glucose. In optimized two-stage fed-batch fermentation, BS106 produced 3.28 g/L lycopene in a 7 L fermenter, which is the highest concentration achieved in S. cerevisiae to date. It will decrease the consumption of tomatoes for lycopene extraction and increase the market supply of lycopene.

Keywords: Saccharomyces cerevisiae; enzyme screening; fed-batch fermentation; lycopene; systematic metabolic engineering.

MeSH terms

  • Biosynthetic Pathways
  • Fermentation
  • Lycopene / metabolism*
  • Metabolic Engineering*
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism

Substances

  • Saccharomyces cerevisiae Proteins
  • Lycopene