A Terminal Iron Nitrilimine Complex: Accessing the Terminal Nitride through Diazo N-N Bond Cleavage

Angew Chem Int Ed Engl. 2019 Dec 16;58(51):18547-18551. doi: 10.1002/anie.201910428. Epub 2019 Oct 31.

Abstract

A novel method for the N-N bond cleavage of trimethylsilyl diazomethane is reported for the synthesis of terminal nitride complexes. The lithium salt of trimethylsilyl diazomethane was used to generate a rare terminal nitrilimine transition metal complex with partially occupied d-orbitals. This iron complex 2 was characterized by CHN combustion analysis, 1 H and 13 C NMR spectroscopic analysis, single-crystal X-ray crystallography, SQUID magnetometry, 57 Fe Mössbauer spectroscopy, and computational analysis. The combined results suggest a high-spin d 6 (S=2) electronic configuration and an allenic structure of the nitrilimine ligand. Reduction of 2 results in release of the nitrilimine ligand and formation of the iron(I) complex 3, which was characterized by CHN combustion analysis, 1 H NMR spectroscopic analysis, and single-crystal X-ray crystallography. Treatment of 2 with fluoride salts quantitatively yields the diamagnetic FeIV nitride complex 4, with concomitant formation of cyanide and trimethylsilyl fluoride through N-N bond cleavage.

Keywords: N-heterocyclic carbenes; N−N activation; diazo compounds; iron; terminal nitrides.