Combination of black phosphorus nanosheets and MCNTs via phosphoruscarbon bonds for reducing the flammability of air stable epoxy resin nanocomposites

J Hazard Mater. 2020 Feb 5:383:121069. doi: 10.1016/j.jhazmat.2019.121069. Epub 2019 Sep 6.

Abstract

As a rising star of two-dimensional material, black phosphorus (BP) has attracted tremendous attention in applications of photovoltaics, transistors and batteries due to its unique characteristics. Inspiring, we developed a simple strategy to fabricate BP-MCNTs as highly promising inorganic phosphorus-based flame retardant. After incorporation 2 wt% BP-MCNTs11(the mass ratio of BP:MCNTs=1:1) nanohybrid, the peak of heat release rate and total heat release of EP nanocomposites reduced by 55.81% and 41.17% at a phosphorus content of only 1 wt%, and the comprehensive index FGI for evaluating the flame retardant of materials decreased from 17.35 to 6.97. In addition, the typical flammable volatile are suppressed significantly, and the first stage of carbon monoxide release is disappeared. The improvement of fire safety and inhibition of smoke toxicity could be attributed to the the synergistic effects of nano-barrier, catalytic charring and radicals trapping of BP-MCNTs nanohybrid. More importantly, BP hybrid with MCNTs and wrapped in EP matrix which formed effective isolation protection against the ambient degradation. Raman spectra and SEM results confirmed that EP/BP-MCNTs performed enhanced ambient stability than EP/BP-BS nanocomposites after three months. This study demonstrates its great potential for preparation of air-stable BP based nanocomposites with enhanced fire safety.

Keywords: Air stability; Black; Fire safety; Multi-walled carbon nanotubers; Phosphorus; Smoke toxicity.

Publication types

  • Research Support, Non-U.S. Gov't