Human adaptation to biodiversity change: An adaptation process approach applied to a case study from southern India

Ambio. 2019 Dec;48(12):1431-1446. doi: 10.1007/s13280-019-01225-7. Epub 2019 Sep 13.

Abstract

Adaptation to environmental change, including biodiversity change, is both a new imperative in the face of global climate change and the oldest problem in human history. Humans have evolved a wide range of adaptation strategies in response to localised environmental changes, which have contributed strongly to both biological and cultural diversity. The evolving set of locally driven, 'bottom-up' responses to environmental change is collectively termed 'autonomous adaptation,' while its obverse, 'planned adaptation,' refers to 'top-down' (from without, e.g. State-driven) responses. After reviewing the dominant vulnerability, risk, and pathway approaches to adaptation, this paper applies an alternative framework for understanding human adaptation processes and responding more robustly to future adaptation needs. This adaptation processes-to-pathways framework is then deployed to consider human responses to biodiversity change caused by an aggressive 'invasive' plant, Lantana camara L., in several agri-forest communities of southern India. The results show that a variety of adaptation processes are developing to make Lantana less disruptive and more useable-from avoidance through mobility strategies to utilizing the plant for economic diversification. However, there is currently no clear synergy or policy support to connect them to a successful long-term adaptation pathway. These results are evaluated in relation to broader trends in adaptation analysis and governance to suggest ways of improving our understanding and support for human adaptation to biodiversity change at the household, community, and regional livelisystem levels, especially in societies highly dependent on local biodiversity for their livelihoods.

Keywords: Adaptation; Biodiversity change; Climate change; Invasive plants; Vulnerability.

MeSH terms

  • Adaptation, Physiological
  • Biodiversity*
  • Climate Change*
  • Humans
  • India
  • Plants