VPS37A directs ESCRT recruitment for phagophore closure

J Cell Biol. 2019 Oct 7;218(10):3336-3354. doi: 10.1083/jcb.201902170. Epub 2019 Sep 13.

Abstract

The process of phagophore closure requires the endosomal sorting complex required for transport III (ESCRT-III) subunit CHMP2A and the AAA ATPase VPS4, but their regulatory mechanisms remain unknown. Here, we establish a FACS-based HaloTag-LC3 autophagosome completion assay to screen a genome-wide CRISPR library and identify the ESCRT-I subunit VPS37A as a critical component for phagophore closure. VPS37A localizes on the phagophore through the N-terminal putative ubiquitin E2 variant domain, which is found to be required for autophagosome completion but dispensable for ESCRT-I complex formation and the degradation of epidermal growth factor receptor in the multivesicular body pathway. Notably, loss of VPS37A abrogates the phagophore recruitment of the ESCRT-I subunit VPS28 and CHMP2A, whereas inhibition of membrane closure by CHMP2A depletion or VPS4 inhibition accumulates VPS37A on the phagophore. These observations suggest that VPS37A coordinates the recruitment of a unique set of ESCRT machinery components for phagophore closure in mammalian cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cells, Cultured
  • Endosomal Sorting Complexes Required for Transport / metabolism*
  • HEK293 Cells
  • HeLa Cells
  • Humans
  • Phagosomes / metabolism*

Substances

  • Endosomal Sorting Complexes Required for Transport
  • VPS37A protein, human