Synthesis, properties & applications of N-heterocyclic olefins in catalysis

Chem Commun (Camb). 2019 Oct 7;55(78):11658-11670. doi: 10.1039/c9cc06316a. Epub 2019 Sep 13.

Abstract

N-Heterocyclic olefins (NHOs), a recently (re-)discovered type of electron-rich, polar alkene, are comprehensively presented. Along with synthetic aspects and chemical properties, special emphasis is put on the multi-faceted impact NHOs already have had on catalysis. This is discussed along the lines of small molecule organocatalysis, organo- and metal-assisted polymerization and of the understanding and application of NHO-ligated organometallic complexes. Highlighted are the strong basicity of NHOs ("superbases"), their high nucleophilicity and the design principles to tailor NHO (organo-)catalysts. It is demonstrated that NHOs can complement, and in many cases out-perform, the much better established N-heterocyclic carbene-based systems. Examples include among others CO2-sequestration, the polymerization of lactones and epoxides or the transfer hydrogenation of carbonyls. Further, the unique ability to selectively address basic or nucleophilic reaction pathways via NHO-mediation is detailed, as is the bonding situation in NHO-metal complexes and the ability of the olefin to act as an electronically flexible ligand.