The practical utility of the synthesis FeNi3@SiO2@TiO2 magnetic nanoparticles as an efficient photocatalyst for the humic acid degradation

Chemosphere. 2020 Jan:239:124723. doi: 10.1016/j.chemosphere.2019.124723. Epub 2019 Sep 5.

Abstract

Humic acid (HA) compounds in drinking water and wastewater disinfection processes are viewed as precursors of highly toxic, carcinogenic, and mutagenic disinfection by-product chemicals. In recent times, these compounds have gained considerable attention of scientists for their successful removal from aqueous solutions to permissible limits. To achieve this aim, the present study investigated, for the first time, the photocatalytical performance of the synthesis FeNi3@SiO2@TiO2 nanoparticles for the HA degradation under different environmental conditions. The photocatalytic reactions were performed using ultraviolet (UV) radiation, whose intensity was fixed at 2500 μW/cm2 throughout the experimental study. The characterization study performed, using specific diagnostic techniques, revealed the presence of several good morphological, magnetic, and catalytic specifications of the synthesized nanoparticles. The use of the simplified form of the Langmuir-Hinshelwood equation sufficiently describes the experimental data of the HA kinetic degradation, as it shows a high coefficient of regression values. Furthermore, the complete HA degradation was reached under conditions of pH = 3; initial HA concentration = 10 mg/L; FeNi3@SiO2@TiO2 nanoparticles dosage = 0.01 g/L; and reaction time >30 min. Thus, the results obtained from this research suggested that the catalyst of FeNi3@SiO2@TiO2 nanoparticles was an attractive, novel, and effective agent, which could be used for the degradation of HA in the photocatalytic processes.

Keywords: Degradation; Environmental parameters; FeNi(3)@SiO(2)@TiO(2) nanoparticles; Humic acid; Kinetics; Photocatalytic reactions.

MeSH terms

  • Catalysis
  • Drinking Water
  • Humic Substances*
  • Hydrogen-Ion Concentration
  • Kinetics
  • Magnetite Nanoparticles / chemistry*
  • Photochemical Processes
  • Silicon Dioxide / chemistry
  • Titanium / chemistry
  • Ultraviolet Rays
  • Wastewater
  • Water Pollutants, Chemical / chemistry
  • Water Purification / methods*

Substances

  • Drinking Water
  • Humic Substances
  • Magnetite Nanoparticles
  • Waste Water
  • Water Pollutants, Chemical
  • titanium dioxide
  • Silicon Dioxide
  • Titanium