Protective Effects of TRPV1 Activation Against Cardiac Ischemia/ Reperfusion Injury is Blunted by Diet-Induced Obesity

Cardiovasc Hematol Disord Drug Targets. 2020;20(2):122-130. doi: 10.2174/1871529X19666190912152041.

Abstract

Background: Activation of Transient Receptor Potential Vanilloid Subtype 1 (TRPV1) channels protects the heart from Ischemia/Reperfusion (I/R) injury through releasing Calcitonin Gene-Related Peptide (CGRP) and Substance P (SP). The current study aimed to study the cardioprotective effects of TRPV1 in obesity.

Methods: TRPV1 gene knockout (TRPV1-/-) and Wild-Type (WT) mice were Fed a High-Fat Diet (HFD) or a control diet or for 20 weeks, and then the hearts were collected for I/R injury ex vivo. The hearts were mounted on a Langendorff apparatus and subjected to ischemia (30 min) and reperfusion (40 min) after incubated with capsaicin (10 nmol/L), CGRP (0.1 μmol/L) and SP (0.1 μmol/L). Then, Coronary Flow (CF), left ventricular peak positive dP/dt (+dP/dt), Left Ventricular Developed Pressure (LVDP) and Left Ventricular End-Diastolic Pressure (LVEDP) were measured.

Results: HFD intake remarkably reduced CF, +dP/dt and LVDP and elevated LVEDP in both strains (P<0.05). Treatment with capsaicin decreased infarct size, increased CF, +dP/dt and LVDP, and decreased LVEDP in WT mice on control diet (P<0.05), but did not do so in other three groups. Treatment with CGRP and SP decreased infarct size in both strains fed with control diet (P<0.05). In contrast, not all the parameters of cardiac postischemic recovery in HFD-fed WT and TRPV1-/- mice were improved by CGRP and SP.

Conclusion: These results suggest that HFD intake impairs cardiac postischemic recovery. HFDinduced impairment of recovery is alleviated by CGRP in both strains and by SP only in TRPV1-/- mice, indicating that the effects of CGRP and SP are differentially regulated during HFD intake.

Keywords: CGRP; TRPV1; congestive heart failure; ischemia/reperfusion injury; obesity; substance P..

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Glucose / metabolism
  • Capsaicin / pharmacology
  • Diet, High-Fat
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Myocardial Reperfusion Injury / genetics
  • Myocardial Reperfusion Injury / metabolism*
  • Obesity / metabolism*
  • TRPV Cation Channels / agonists
  • TRPV Cation Channels / genetics
  • TRPV Cation Channels / metabolism*

Substances

  • Blood Glucose
  • TRPV Cation Channels
  • TRPV1 protein, mouse
  • Capsaicin