Two-photon based pulse autocorrelation with CdSe nanoplatelets

Nanoscale. 2019 Oct 7;11(37):17293-17300. doi: 10.1039/c9nr06156h. Epub 2019 Sep 12.

Abstract

We investigate broadband two-photon absorption autocorrelators based on II-VI semiconductor nanoplatelets as an alternative to common second harmonic generation based techniques. As compared to bulk materials the exceptionally high enhancement of two-photon absorption in these 2D structures results in very efficient two-photon absorption based autocorrelation detected via PL emission. We compare the results with TPA autocorrelation in CdS bulk as well as SHG based autocorrelation in β-barium borate. We show that CdSe nanoplatelet based autocorrelation can exceed the efficiency of conventional methods by two orders in magnitude, especially for short interaction length, and allows a precise pulse-width determination. We demonstrate that very high two-photon absorption cross sections of the nanoplatelets are the basis for this effective TPA autocorrelation. Based on our results with II-VI nanoplatelets efficient broadband autocorrelation with more than ∼100 nm bandwidth and very high sensitivity seems feasible.