Understanding the role of fluorine-containing plasma on optical properties of fused silica optics during the combined process of RIE and DCE

Opt Express. 2019 Aug 5;27(16):23307-23320. doi: 10.1364/OE.27.023307.

Abstract

Reactive ion etching (RIE) is crucial for fabricating high-quality fused silica optics since this technique can be used as a first step before dynamic chemical etching (DCE) for tracelessly removing the fractured defects in subsurface layer. The final quality of the optics is dramatically influenced by the plasma etching condition but still lacks sufficient information for practical application. In this work, combination of RIE and DCE was investigated deeply on polished fused silica surface by changing the gas type and flow rate. We show that the proper choice of fluorine-containing plasma condition during the RIE process allows the simultaneous occurrence of high surface quality and a low concentration of etching-introduced defects on fused silica. This leads to an ultrahigh laser-induced damage threshold at 355 nm while substantially keeping the surface roughness unchanged. This study paves the way for designing and developing a next-generation surface modification ability of high-quality fused silica with the great potential for high-power laser application.