Oxymatrine enhanced anti-tumor effects of Bevacizumab against triple-negative breast cancer via abating Wnt/β-Catenin signaling pathway

Am J Cancer Res. 2019 Aug 1;9(8):1796-1814. eCollection 2019.

Abstract

Bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor A (VEGF-A), was used in combination with traditional chemotherapy as the first line treatment for metastatic colorectal cancer (mCRC), non-small cell lung cancer (NSCLC) and advanced ovarian cancer. However, it shows limited efficacy for human triple-negative breast cancer (TNBC). Bevacizumab shows potent anti-angiogenesis activity, meanwhile, it also increases invasive and metastatic properties of TNBC cells by activiting Wnt/β-Catenin pathway. To overcome this problem, and fully utilize its potency against cancer, further synergistic strategy is recommended to be developed, especially the concurrent use with those Wnt-targeting agents. Here, by screening a small library of traditional Chinese medicine, we identified a Chinese herb derived Oxymatrine, which could target Wnt/β-Catenin signaling and compromise the oncogenic effects of Bevacizumab. Bevacizumab was validated to induce epithelial-mesenchymal cell transformation (EMT) and cancer stem-like properties of TNBC cells in hypoxia/nutritional stress environment. On the contrary, Oxymatrine reversed the EMT phenotype and depleted the subpopulation of TNBC stem cells induced by Bevacizumab. Oxymatrine enhanced the anti-tumor effects of Bevacizumab in vivo, and holded the potential of reducing the risk of relapse and metastasis by impairing the self-renewal ability of TNBC stem cells. The underlying mechanism was elucidated: Bevacizumab stimulated Wnt/β-Catenin signaling pathway, and Oxymatrine could compromise this effect. On this foundation, factoring into the satisfactory anti-angiogenic activity and low toxicity, Oxymatrine is a good candidate for the synergistic therapy together with Bevacizumab for the treatment of TNBC.

Keywords: EMT; Oxymatrine; TNBC; Wnt/β-Catenin pathway; bevacizumab.