Theoretical calculation into the effect of molar ratio on the structures, stability, mechanical properties and detonation performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane/ 1,3,5-trinitro-1,3,5-triazacyco-hexane cocrystal

J Mol Model. 2019 Sep 3;25(9):299. doi: 10.1007/s00894-019-4181-6.

Abstract

Molecular dynamics (MD) simulation was conducted to research the effect of molar ratio on the thermal stability, mechanical properties, and detonation performance of HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane)/RDX (1,3,5-trinitro-1,3,5-triazacyco-hexane) cocrystal explosive at ambient condition. The binding energy, mechanical properties, and the detonation parameters of the pure β-HMX, RDX crystal, and the cocrystal models were got and contrasted. The results demonstrate that molar ratio has a great influence on the properties of the cocrystal system. The binding energy of the cocrystals has the maximum values at the 1:1 molar ratio, indicating that the stability of HMX/RDX(1:1) cocrystal is the best and HMX and RDX may prefer to cocrystallizing at 1:1 molar ratio. What's more, the tensile modulus (E) and shear modulus (G) of the HMX/RDX(1:1) cocrystals have the minimum value, while the C12-C44 and K/G have the maximum value, implying that the cocrystal at 1:1 molar ratio has the best mechanical properties. Simultaneously, the E, K, and G of the cocrystals are all smaller than those of β-HMX's and generally larger than those RDX's, while the Cauchy pressure (C12-C44) and K/G ratio were greater, demonstrating that cocrystallizing can improve the brittleness and enhance the ductility. The detonation velocity (D) and detonation pressure (P) decrease with the rising RDX content, while the properties are still superior to the pure RDX crystal; thus, the energy properties of the cocrystal are still excellent. In a word, HMX/RDX cocrystal at 1:1 molar ratio has the best thermal stability, mechanical properties, and the excellent energetic performance.

Keywords: Binding energy; Detonation performance; HMX/RDX cocrystal; Mechanical properties; Molar ratio; Molecular dynamics (MD) simulation.