Effect of the CuAl2O4 and CuAlO2 Phases in Catalytic Wet Air Oxidation of ETBE and TAME using CuO/γ-Al2O3 catalysts

ChemistryOpen. 2019 Aug 28;8(8):1143-1150. doi: 10.1002/open.201900080. eCollection 2019 Aug.

Abstract

This paper studies Cu/Al2O3 catalysts, synthesized in two ways: copper deposit in the synthesis of alumina (sol gel) and incipient impregnation stabilized at 400 °C. The materials were characterized by X-ray diffraction studies, nitrogen physisorption, temperature programmed reduction of H2, dehydration of isopropanol, scanning electronic microscopy, transmission electronic microscopy, which were evaluated in the liquid phase oxidation reaction of ethyl tert-butyl ether and tert-amyl methyl ether. The formation of CuAl2O4 and CuAlO2 in the samples synthesized by sol gel, led to a modification of the texture, thus resulting in an expansion of the specific area of the materials. CuAl2O4 and CuAlO2 have been identified by DRX from a content of 10 % Copper, the first showed the highest intensity with this technique. In the same way, these species favor the presence of Lewis acid sites; this is reflected in the materials with (Di-isopropyl Ether) DIPE of 96.7 % and 91.1 % for the samples SAlCu5 and SAlCu15 respectively. The catalytic activity of the materials prepared by sol gel is in the function of the number of surface acid sites, the smaller particle size of the Cu and the surface of the contact, in the case of the ETBE meanwhile for TAME the activity was based mainly on the strength of the present acid sites. With impregnated materials, the activity is attributed to the smaller particle size of the Cu and the greater strength of the surface acid sites in the solid. The formation of spinel species inhibits the leaching phenomenon in the reaction milieu.

Keywords: Cu/Al2O3 catalysts; X-ray diffraction studies; heterogeneous catalysis; scanning electronic microscopy; wet air oxidation reaction.