Protein-Capped Metal Nanoparticles Inhibit Tau Aggregation in Alzheimer's Disease

ACS Omega. 2019 Jul 29;4(7):12833-12840. doi: 10.1021/acsomega.9b01411. eCollection 2019 Jul 31.

Abstract

The Alzheimer's disease (AD) therapeutic research is yielding a large number of potent molecules. The nanoparticle-based therapeutics against the protein aggregation in AD is also taking a lead especially with amyloid-β as a primary target. In this work, we have screened for the first time protein-capped (PC) metal nanoparticles for their potency in inhibiting Tau aggregation in vitro. We present a novel function of PC-Fe3O4 and PC-CdS nanoparticles as potent Tau aggregation inhibitors by fluorescence spectrometry, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and electron microscopy. We demonstrate that the biologically synthesized PC-metal nanoparticles, especially iron oxide do not affect the viability of neuroblastoma cells. Moreover, PC-CdS nanoparticles show dual properties of inhibition and disaggregation of Tau. Thus, the nanoparticles can take a lead as potent Tau aggregation inhibitors and can be modified for specific drug delivery due to their very small size. The current work presents unprecedented strategy to design anti-Tau aggregation drugs, which provides interesting insights to understand the role of biological nanostructures in Alzheimer's disease.