Transformation of Jatropha Oil into High-Quality Biofuel over Ni-W Bimetallic Catalysts

ACS Omega. 2019 Jun 18;4(6):10580-10592. doi: 10.1021/acsomega.9b00375. eCollection 2019 Jun 30.

Abstract

The production of fuel from the hydrodeoxygenation of vegetable oils has been extensively investigated on account of the decline of petroleum-based fuels and increase of ecological problems. The conversion of jatropha oil over Al-MCM-41-supported Ni, W, and Ni-W catalysts was studied at 3 MPa and 360 °C. Over the monometallic Ni and W catalysts, the biofuel yield was low, about 19.3 and 12.5 wt %, respectively, whereas the highest biofuel yield reached 63.5 wt % over the Ni-W bimetallic catalysts. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and high-resolution TEM results suggested that the proper amount of Ni and W would form a Ni17W3 active phase, the particle size of which varied with the content of Ni and W or preparation methods. The crystalline Ni17W3 phase formed when the content of both Ni and W reached 10%. With further increase of the content of W or Ni to 15%, the crystal size of Ni17W3 grew from 7 to 14 nm or to 20 nm, whereas the biofuel yield decreased with the increase of the Ni17W3 crystal size. The 10Ni-10W/Al-MCM-41 catalyst with the Ni17W3 crystal size of 7 nm showed the best performance for the transformation of jatropha oil into high-grade biofuel.