Selective Transfer Hydrogenation of Furfural into Furfuryl Alcohol on Zr-Containing Catalysts Using Lower Alcohols as Hydrogen Donors

ACS Omega. 2018 Jun 8;3(6):6206-6216. doi: 10.1021/acsomega.8b00138. eCollection 2018 Jun 30.

Abstract

A series of zirconium-based catalysts were prepared for the selective transfer hydrogenation of biomass-derived furfural (FFR) into furfuryl alcohol with lower alcohols as hydrogen sources. The sample structures were clearly characterized using various methods, such as X-ray powder diffraction, thermogravimetric analysis, scanning electron microscope, NH3-temperature-programmed desorption (TPD), CO2-TPD, and nitrogen physisorption. Excellent furfuryl alcohol yield of 98.9 mol % was achieved over Zr(OH)4 using 2-propanol as a hydrogen donor at 447 K. The poisoning experiments indicated that basic centers displayed pronounced effect for FFR transfer hydrogenation. Moderate monoclinic phase content in ZrO2-x enhanced the conversion rate and furfuryl alcohol selectivity, whereas acid-basic site density ratio had slight influence on FFR conversion. Besides, Zr(OH)4 revealed good performance and stability after being repeated four times. The possible mechanism for this transfer hydrogenation process over Zr(OH)4 catalyst with 2-propanol as the hydrogen source was proposed.