Rapid Accessible Fabrication and Engineering of Bilayered Hydrogels: Revisiting the Cross-Linking Effect on Superabsorbent Poly(acrylic acid)

ACS Omega. 2018 Mar 14;3(3):3096-3103. doi: 10.1021/acsomega.8b00079. eCollection 2018 Mar 31.

Abstract

Superabsorbent hydrogels are significant not only in materials science but also in industries and daily life, being used in diapers or soil conditioners as typical examples. The main feature of these materials is their capacity to hold considerable amount of water, which is strongly dependent on the cross-linking density. This study focuses on the preparation of hydrogels by reweighing the effect of cross-linking density on physical properties, which provides green fabrication of bilayered hydrogels that consist of homogeneous structural motifs but show programmed responses via sequential radical polymerization. In particular, when two hydrogel layers containing different cross-linking densities are joined together, an integrated linear bilayer shows heterogeneous deformation triggered by water. We monitor the linear hydrogel bilayer bending into a circle and engineer it by incorporating disperse dyes, changing colors as well as physical properties. In addition, we demonstrate an electric circuit switch using a patterned hydrogel. Anisotropic shape change of the polyelectrolyte switch closes an open circuit and lights a light-emitting diode in red. This proposed fabrication and engineering can be expanded to other superabsorbent systems and create smart responses in cross-linked systems for biomedical or environmental applications.